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Abstract-Experiments and analyses are reported for an open, free convection loop. The loop is U-shaped 
with the lower segment heated; the vertical legs are adiabatic and are connected to an isothermal reservoir. 
The loop is filled with water or a water-saturated porous medium. Experimental results include the starting 
transients and the friction factors and heat transfer rates at steady state for flow Reynolds numbers from 4 to 
1000. O~llations are observed with the onset of boiling. Single-phase stability analyses confirm the unstable 
rest states and the stable steady-states observed in the experiments, and reveal a conditional instability of the 
steady states. Numerical simulations of the starting transients are obtained and are compared with 

experiment. Results are applicable to geothermal, solar, and industrial open-loop thermosyphons. 
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1. INTRODUCTlON 

FLUID motion through an open, free convection loop is 
examined in this paper. Such loops can transfer fluid 
between two reservoirs at the same elevation by simply 
heating or cooling the interconnecting duct. Open 
loops have been used to explain many geohydrother- 
ma1 phenomena [l]. Free Convection loops, in general, 
are of interest for many technological applications 
including the production of geothermal energy, solar 
heaters, emergency reactor-core cooling, and process 
industries [2-41. 

Prior studies have tended to emphasize closed, free 
convection loops. In a closed loop, fluid is recirculated 
continuously around a piping network which forms 
the loop. Aspects which have been examined include 
the starting transients [S, 61, steady-state performance 
[7, S], and stability of the steady-state motion 17-9-j. 
Both experiments and analyses reveal oscillatory flows 
for heating conditions which are vertically symmetric 
(i.e. symmetric about a vertical plane) [7, 91 and 
slightly asymmetric [S]. The oscillations have been 
explained in terms of a phase lag between the heating 
process and the generation of the buoyancy force. 
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Considerably less is known about open, free con- 
vection loops. An open loop differs from a closed loop 

in that all or part of the circulating fluid may be 
exchanged with an external reservoir. The temperature 

and pressure of the reservoir are independent of 
conditions in the loop. The steady-state performance 
of open loops has been examined for simple geometries 
both with prescribed wall temperatures along the loop 
[lo&121 and with significant wall conduction effects 
[13, 141. The stability of the rest state for loops with 
symmetric heating from below has been examined and 
critical Rayleigh numbers found for the onset of 
motion [14]. The rest state was stable because cooling 
and friction processes were able to damp motions in 

the loop. 
From the foregoing, it is clear that very little has 

been done experimentally or theoretically on open, 
free convection loops to examine the starting tran- 
sients, steady-state operation, or flow stability. Those 
topics form the subject of the present paper. An 

experimental apparatus is employed, as shown in Fig. 
1, in which the geometry and heating conditions are 
symmetric about a vertical plane. Fluid motion may 
thus initiate in either direction in the loop. The loop is 

U-shaped; the lower segment is heated uniformly and 
the vertical legs are adiabatic. The vertical legs are 
connected to an isothermal reservoir which is open to 
the atmosphere. A zero pressure difference between 
inlet and outlet is thus maintained. In general. a 

pressure difference between inlet and outlet could be 
maintained externally, but is not considered in the 
present study. A unique and novel feature of the loop 

shown in Fig. 1 is that the working medium may be 

either water or a water-saturated porous medium. In 
this paper, we shall refer to the two cases as the “water 

loop” and the “porous loop”, respectively. Flow 
Reynolds numbers range from 4 to 200 (porous loop) 
and 100 to 1000 (water loop). Boiling occurs at the 

higher Re-values in each loop. Results show that the 
steady states do not oscillate with symmetric heating 
(in contrast with closed loops), but that boiling leads to 
oscillations. The experimental results are compared 

with theoretical descriptions of the transient and 

steady-states, and with stability analyses of the quies- 
cent and steady-states. 

2. EXPERIMENTAL APPARA-I’C S 

4 schematic diagram of the free convection loop 
used for the experiments is shown in Fig. 1. The loop is 
in the form of a vertical U. The loop consists of three 
straight segments and two ells (70mm radius of 
curvature) of Pyrex glass tubing (25 mm I.D. ; 37 mm 
O.D.). Each vertical leg is connected at the top to a 30 1. 
tank. The tanks are interconnected by piping of low 
resistance ( < 5% of loop resistance) and are cooled by 
passing tap water through copper cooling coils. 

Heating is accomplished by wrapping the lower 
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FIG. 1. The experimental apparatus. 
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1 GRAVITY T FLOW 
DIRECTION 

Fro. 2. Geometry and coordinate system. 

horizontal leg of the loop with nichrome heating tape. 
The heating is distribute uniformly over the length 
shown in Fig. 1. The U-shaped loop is insulated with a 
layer of foil-covered fiberglass insulation. The input 
heat flux ranges from 0 to 2300 W and is obtained by 
measuring the heater resistance and the voltage input 
from a variable transformer. Heat losses through the 
insulation are subtracted to obtain the heat inputs 
reported in this paper. 

Temperatures were obtained with 36 gage 
copper-constantan thermocouples located at stations 
A-E in Fig. 1. At stations A and E five thermocouples, 
connected in series and supported over the cross 
section as shown in Fig. 1, are used to obtain an 
average fluid temperature. Additional single thermo- 
couples are located along the loop (as shown) and 
in the tanks at the top. 

Experiments are conducted either with distilled 
water in the loop and tanks, or with a non-iodizing 
porous medium in the loop. In the latter case, the loop 
and tanks are also filled with distilled water. The 
porous medium consists of closely-packed, uniformly- 
sized, 5 mm Pyrex beads. 

Flow rates in the loop are inferred from the cor- 
rected input heat flux and the temperature difference 
between stations E and A (Fig. 1). During the experi- 
ments, the reservoirs at the top were found to remain 
isothermal with essentially no elevation difference 
between their free surfaces. 

3. MATHEMATICAL MODEL 

A simple, theoretical model of the experimental loop 
is formulated in this section. The model is based on the 
geometry and coordinate system sketched in Fig. 2. 
The model loop consists of three straight tubes of 
internal diameter cl and is of height b, width a, and over- 

all length L. Following prior work [5-7, 91, one- 
dimensional, tim~de~ndent balances of mass, mom- 
entum, and energy are employed. Properties are 
assumed constant except for density in the buoyancy 
term (the Boussinesq approximation). The equations 
are written in a form suitable for a loop filled with 
water or a water-saturated porous medium. The 
velocities and temperatures appearing in the balances 
are cross-sectionally averaged values. 

For an incompressible fluid, the continuity equation 
implies that the velocity (u^) is constant within the loop 
and a function only of time (f) 

u* = L(f). (1) 

Carets denote the dimensional form of variables which 
will later be made nondimensional. A momentum 
balance at any axial station s^ along the loop yields 

+ g(1 - jl,(%- T,))cosd = - _!_ t!f 
pr 3 

(2) 

where the various terms are respectively due to inertia, 
friction, body, and pressure forces. In (2), (b is the 
volume porosity, f is the friction factor, ?‘($ is the 
mean fluid temperature at station $ 0 is the angle 
between the fluid velocity vector and the vertical, and 
p/ is the fluid density at temperature T, (the inlet 
temperature). Integration of (2) from inlet to outlet 
along the loop yields an integral force balance on the 
fluid in the loop, 

In writing (2) and (3), it is convenient to introduce a 
friction factor which may be expressed in terms of 
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steady-state correlations of the form 

where p and n are constants and the Reynolds number 
is defined in terms of the mean velocity by Re = Cd/v,, 
where v/ is the kinematic viscosity of water. For the 

case of isothermal laminar flow in a straight pipe, we 
have p = 64 and n = 1 [lS]; for turbulent flow, we 
have p = 0.316 and n = 0.25 [ 151; and for flow 

through a porous medium, we have p = 2d21i, and n 
= 1, where i, is the formation permeability [16]. The 
foregoing correlations neglect secondary flows due to 

curvature or buoyancy. We will later fit (4) to our 
experimental data and implicitly include such effects. 

A local heat balance on the loop, neglecting axial 

conduction and viscous heating, yields 

in the heater 

(5) 

1 O otherwise 

where 0 is the total heat input to the loop and r is a 
ratio of volumetric heat capacities given by 

r = ‘WPf + (1 - $)PmCpm 
(6) 

Qf CPf 

Subscripts f and m respectively denote the fluid and 
solid matrix appearing in the porous loop. For the 
porous loop, C$ = 0.44 and r = 0.72. For the water 

loop, we have 4 = 1 and Y = 1. 
We now introduce nondimensional variables 

(7) 

Q=hA!!d_i) 
L P/CPf4 

In addition, the friction factor assumes the form 

(8) 

Substitution of the foregoing expressions into the 
momentum and energy equations leads to 

i 

,/h 
y o Tcos %ds 

in the heater 

otherwise 

(9) 

(10) 

where three geometric parameters from the loop 

appear: d/h, L/h, and ;’ = a,;h. The steady-state 

solution (subscript s) is readily obtained as 

0 

1 

11, = In ’ ’ ” (11) 

before the heater 

T, = 

!* 

m’ J_“(s -so) in the heater IX?! I, 

ml 3-n after the heater 

where .sO is the s-value at the start of the heating 

section. Without loss of generality in the subsequent 

stability analyses we shall assume that the heat 
addition to the horizontal leg is uniformly distributed 

over its entire length. For the stability analyses. the 

parameter 7 then becomes identical with the aspect 
ratio of the loop, 7 = a,/h = a/h. 

4. RESULTS AND DISC’I’SSIOU 

Experimental observations on the transient and 

steady behavior of the free convection loop are 
presented in this section. The behavior is compared 

with results derived from the theoretical model, as 
appropriate. The discussion is organized in terms 01 

the stability of the rest state (Section 4. l), the transients 
following the onset of motion (Section 4.2), the steady- 
state behavior (Sections 4.3 and 4.4), and the onset of 
boiling (Section 4.5). 

4.1. Onset of motion jiom a rest stute 
Experiments were initiated after allowing the entire 

system to come into equilibrium with the room. A 

small amount of heating was then applied to the loop. 
In all cases. a temperature difference eventually de- 
veloped between inlet and outlet, indicating a uni- 

directional flow through the loop. Flows developed in 
either direction through the loop with essentially equal 

probability. 
The experiments thus suggest that the quiescent 

initial state (the rest state) is unstable when heated 

from below. Note that three possible states exist 
following the application of heating: a quiescent state 
with no motion (U = 0); a pair of circulating flows 
which are symmetric about the plane of symmetr) 
(with upflow and downflow in each vertical leg) ; and a 
state with unidirectional flow through the loop. Only 
the latter state appeared in the experiments. 

We next examine the stability of the rest state to 
small disturbances. Our objective is to determine if 
there are any critical conditions associated with the 
growth of a small disturbance, which then leads to a 
unidirectional flow through the loop. We first general- 
ize the rest state to include steady heat addition from 
below but no flow (i.e. Q # 0 and u = 0). The equations 
governing the rest state and any disturbances are the 
force balance (9) and a modified energy equation 
which includes axial heat conduction. For the rest 
state, axial conduction is the only mechanism available 
to transfer heat from the heated section to the cooled 
reservoirs. The modified energy equation is 
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aT aT d* T r-++-=G- + 1 in the heater 
at as as2 

r 

0 otherwise 
(13) 

where G = 2(~/Q)“3(~dk/pIcplvfb) and k is the ther- 
mal conductivity of the &id or the fluid-saturate 
porous medium. The conduction solution for the rest 
state is found from (13) by setting u = 0: 

T, = 

in the vertical legs 

in the heater. 

04) 

The coordinates are as shown in Fig. 2. The boundary 
conditions for (14) are T, = 0 at the tops of the vertical 
legs. 

A small perturbation of the rest state is now 
introduced, of the form 

u = EiIewf’ and T= T, f &?(s)eO*‘, (15) 

where E is a small quantity, u” and F(s) are the 
amplitudes of the velocity and temperature distur- 
bances, and LO* is the growth rate. We will consider the 
system unstable if o* has a positive real part. 

Following conventional procedures, (15) is sub- 
stituted into (13), the rest state solution (14) sub- 
tracted, and terms of O(E)’ neglected. The resulting 
linearized energy equation for the ~rturbation tem- 
perature Fmay then be integrated, and the resulting T 
substituted into the buoyancy integral in (9). A 
characteristic equation for the reduced frequency w 
= rw*/G results: 

F(o) = M + ; 

1 1 -- -- 
cu2 oJl2 

(1 - cosh,/T)sinhJw = o (16) 

cash 2,/w 

where M = 2dG3/#br and N = mG2. In deriving (16), 
we assume a iaminar friction law of the formf = m/u 
(i.e. n = 1) and boundary conditions on pofzero at the 
inlet and zero gradient at the outlet. For simplicity, we 
assume that the perturbation temperature varies lin- 
early across the heating section (true for short 
heaters). Using the Nyquist criterion, which will be 
described in greater detail in Section 4.4, it may be 
shown that (16) always possesses at least one solution 
for o with a positive real part (further details are 
available in reference [17]). Thus, all rest states are 
unstable. 

The instability of the rest state is in accord with 
physical reasoning. The vertical legs of the loop are 
adiabatic. Any asymmetric thermal disturbance in the 
legs leads to a net buoyancy force. The result is an 
induced flow with ascending motion in one leg and 
descending motion in the other. Since the ascending 
flow is warm (from the heated section) and the 
descending flow cool (from the cold reservoir), the 

motion accelerates until buoyancy and friction forces 
are in balance. Since small disturbances inevitably 
arise in the experiments, the heated rest states will 
always undergo a transition to motion. The linear 
theory reveals that there are no critical conditions 
required for this transition to occur. 

The foregoing unconditional instability of the rest 
state is in contrast with earlier work on symmetrically- 
heated open loops in which the vertical legs were not 
adiabatic [14]. In those loops, heating and cooling 
processes in the vertical legs provided a mechanism to 
damp thermal disturbances. Consequently, critical 
Rayleigh numbers appeared for the onset of fluid 
motion. Since there is no thermal damping in the 
vertical legs of the present experiments a critical 
Rayleigh number does not appear. 

4.2. Sturti~g transients 
Starting transients in the loop were observed expe- 

rimentally and were simulated numerically. Results for 
the porous loop are shown in Figs. 3-5 ; results for the 
water loop are given in Figs. 6 and 7. The experimental 
results (Figs. 3 and 6) display the temperature differ- 
ence between outlet and inlet, ATEA = Tn - TA, and 
the temperature difference between the center of the 
heater and the inlet, AT,, = Tc - T,. The calculated 
results display these variables as well as temperature 
distributions within the loop (Fig. 5). 

Numerical solutions were obtained by approximat- 
ing (9) and (10) with finite differences. Forward time 
and backward space differences were used for (lo), 
allowing the fluid temperature to be advanced ex- 
plicitly in time. The advancement is stable provided 
the time step satisfies the inequality uAt/rAs I 1, 
where At is the time step and As is the spatial mesh size. 
The momentum equation (9) is approximated with a 
backward time difference, steady-state friction factors 
from Section 4.3, and Simpson’s rule for the buoyancy 
integral. The nonlinear momentum equation is advan- 
ced implicitly using the Newton-Raphson technique. 
The mixed explicit-implicit formulation avoids a 
severe time step restriction associated with explicit 
formulations of the momentum equation. Calculations 
were carried out using the apparatus dimensions 
shown in Fig. 1. 

Truncation errors in the numerical calculations 
were carefully monitored. The principal error arises 
from the backward space difference in (10) which 
creates a numerical diffusion. This false diffusion may 
be eliminated by setting uAt/rAs = 1. The laboratory 
experiments, however, reveal a substantial amount of 
axial diffusion which is not attributable to heat 
conduction in the fluid and walls or to heat capacity 
effects in the walls. The diffusion appears to result from 
secondary flows in the heated section. The secondary 
flows are driven by transverse temperature variations 
within the fluid which, in turn, cause localized natural 
convection circulations within the duct. The time 
required to establish these circulations is small com- 
pared to the time required to initiate a flow through the 
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FIG. 3. Experimentally-observed starting transient for the porous loop. The outlet temperature AT, A and the 
heater temperature AT,, are shown for Q = 1.6 x 106. 
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FIG 4. Calculated starting transient for the porous loop. The outlet temperature AT,,, the heater temperature 
AT,--, and the flow velocity u are shown for Q = I.6 x lo6 and an initiating disturbance of Ti = 1.75. 
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FK;. 5. Calculated temperature distributions within the porous loop at various times t. Q = 1.6 x lo6 
= 1.75. 
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FIG. 6. Experimentally-observed starting transients for the water loop. The outlet temperature AT,, is shown 
for various heating rates Q. 

loop. Secondary flows also arise from centrifugal 
effects in the curved sections of the duct. We find that 
the effects of the secondary flows may be simulated, at 
least approximately, by introducing a velocity- 
dependent numerical diffusion. This is achieved by 
setting uAtJrAs = 0.6 in the calculations for both loops 
(with As = 0.1). Further details are available in Bau 
[17]. We note in passing that false diffusion appears to 
be present, but is not discussed, in the transient 
calculations of Grief et al. [5]. 

In the experiments as well as the calculations the 
initial conditions correspond to an isothermal rest 
state with T= u = 0. The inlet temperature is main- 
tained at T= 0. Heating is started at t = 0. In the 
experiments, a flow starts after a time period which 
includes the thermal lag in the heater, the time for 
secondary flows to diffuse warm fluid to the vertical 
legs, and the time required to accelerate the fluid in the 
loop following the appearance of a flow-initiating 
disturbance. In the calculations, on the other hand, the 
fluid remained quiescent in the loop unless a flow- 
initiating disturbance was introduced. Disturbances 

were thus introduced at t = 0 into the calculations by 
raising the initial temperature of one of the vertical legs 
from 0 to Ti. 

Figures 3 and 4 illustrate experimental and numeri- 
cal results, respectively, for the porous loop. Clearly, 
there is a strong qualitative similarity between obser- 
ved and calculated results. After the start of heating, 
experimental observations reveal that heat is transfer- 
red to the fluid in the horizontal leg by conduction 
and by local convective circulations. The heater tem- 
perature (dashed lines, Figs. 3 and 4) increases during 
this period. Since the state is unstable, a unidirectional 
flow through the loop eventually starts; the heater 
temperature peaks and starts to drop. 

Eventually, the outlet temperature in Figs. 3 and 4 
increases as warm fluid is discharged. The first peak in 
AT,, corresponds to the initial pulse of warm fluid 
from the heater. The experimentally-observed peak in 
ATEA is lower than the calculated peak due partly to 
heat losses and partly to secondary flows in the 
experiments. The ascending warm pulse accelerates 
the flow, causing the flow rate, u, in Fig. 4 to increase. 

0 I I 

012345678 
012345678 

TIME, t 

FIG. 7. Calculated starting transients for the water loop. The outlet temperature AT,, is shown: (a) for 
various heating rates Q with the initiating disturbance held fixed at Ti = 0.2. (b) For various initiating 

disturbances Ti with Q = 30 x 106. 
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With the increasing flow rate, cold fluid enters the 
heater section and leads to the first minimum in AT,,. 
In turn, as this cool fluid starts to rise in the ascending 
leg, the flow is decelerated. This slowdown allows the 

heater temperature, AT,,, to again increase and peak 

The result is an oscillating flow rate, U. and oscillating 
temperatures. Clearly, the oscillations result from the 
time lag between the heating process and the sub- 

sequent generation of a buoyancy force. Eventually, 
the oscillations damp out in Figs. 3 and 4 and a steady 
state is achieved. The migration of the first two warm 

pulses through the loop is also apparent in the loop 
temperature distributions shown in Fig. 5. The mig- 
ration of the first peak is shown by the distributions at 
t = 70 and 80, and the second peak by the distributions 
at t = 110 and 126. The steady state results are also 

shown, and agree with the analytical solution in ( 11) 

and (12). 
Figures 6 and 7 illustrate experimental and numeri- 

cal results, respectively, for the water loop. The general 
features are similar to those for the porous loop 

However, the experimentally-observed temperature 
oscillations, Fig. 6, are not as well defined as for the 

porous loop. This is attributed to difficulties in am- 
plifying the experimental signals and to a stronger role 

for the secondary flows in diffusing the peaks. The time 
scales for the heating processes in the two loops are 

quite different. A value of t = 8 for the water loop 

corresponds to 1000 and 410s. respectively, for the 
lowest and highest heating rates in Fig. 6. A value of 
t = 200 for the porous loop corresponds to 12 h in 

Fig. 3. 
Comparative calculations for the water loop are 

shown in Fig. 7. The comparison with the experimental 
results in Fig. 6 is not as striking as for the porous loop 

(i.e. Figs. 3 and 4), again as a result of secondary flows 
In addition, the experimental results show a longer 

time delay before the discharge of warm fluid. 
The results in Fig. 7 illustrate the influence of the 

IO4 

FIG. 8. Friction factor versus Reynolds number for the porous 
loop (5 mm glass beads). The solid line is the experimental 
correlation. The dashed line is based on a conventional 

correlation for the permeability of the porous medium 

heating rate, Q. and the amplitude of the initiating 

disturbance, T,. on AT,,. From Fig. 7(a), increasing Q 
leads XI an earlier increase in the outlet temperature 
and to a reduction in the peak nondimensional outlet 
temperature. The dimensional temperature, of course, 

increases with Q. These trends are generally consistent 
with the experimental transients in Fig. 6. F’rom Fig. 
7(b) it is clear that small values of 7’: lead to longer time 

delays and larger peak temperatures. The time delays 
result because the buoyant acceleration associated 
with a small disturbance is small. In turn, this leads to a 

long residence time in the heater and a large peak 

temperature. Disturbances of T, =m 0.7 and I.75 were 
used in thecalculations for the water and porous loops. 
respectively. 

Figure 7 thus illustrates the influence of Q and Ti on 
the time delay before the discharge of warm fluid. In 

the experiments, Fig. 6. the magnitude of the flow- 
initiating thermal disturbance. 7-,., ih unknown and in a 
sense random. The calculations suggest that the exper- 

imental time delays may be explained in terms of a 
systematic influence (Q) and a random influence IT,). 

Following the transients described in the previous 
section, stable, non-oscillating steady-states were 
achieved. The friction. flow. and heat-transfer charac- 
teristics of the steady states will now be summarized. 

The basic experimental data are the outlet--inlet 

temperature difference, AREA (see Fig. l), as a function 
of the heat input to the loop, 0. The mean velocity in 

the loop can be deduced from A TEA and 0 by using an 

overall heat balance [i.e. by integrating (5)]. The result 
is 

117) 

b-urthermore, the friction factor may be found in term!, 
of these quantities by evaluating the integral in (3) to 
obtain 

Friction factors obtained by substituting (17) into 
(18) are shown in Figs. 8 and 9 for the porous loop and 

the water loop, respectively. The abscissa is a Reynolds 
number obtained by using the velocity given by (17). 
Fluid properties are evaluated by using the mean fluid 
temperatures at inlet and outlet. The experimental 
data are seen to scatter about single straight lines. 
Least-squares fits to the friction factor correlation (4), 
,f= p/Re", yield the solid lines with the p and u 
coefficients shown. Some data after the onset of boiling 
in the porous loop are included ( RP > 85). 

Conventional correlations forf’are shown by dashed 
lines in Figs. 8 and 9. For Fig. 8, a permeability 
appropriate for closely-packed spheres (the 

Kozeny-Carman formula [16]) was used. For Fig. 8, 
the friction factor was based on straight pipes and ells 
[18]. The differences between the conventional cor- 
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Re 

FIG. 9. Friction factor versus Reynolds number for the water 
loop. The solid line is the experimental correlation. The 
dashed line is based on a conventional correlation for laminar 

flow. 

relations and our experiments is a result of secondary 

flows due to curvature and buoyancy. For the porous 
loop, the differences are relatively small (about 11%). 
For the water loop, on the other hand, the differences 
are substantial. This latter fact has been previously 
noted for a closed free convection loop by Creveling et 
al. [7]. 

We will now consider an alternative way of present- 
ing the results. We introduce the Rayleigh, Nusselt 
(following Lapin [lo]) and Prandtl numbers, defined 

by 

d Nu = - 
dkA TEA ’ 

and Pr = !Y$ (19) 

After rearrangement, and combining with (4), we 
obtain the friction factor, flow rate, and temperature 
difference AFaEA as explicit functions of the inde- 
pendent variable 0. In nondimensional form, we have 

f=p3’3-” d ( > 
n/3-n 

(20) 

If desired, the Rayleigh number may be found from 
(19) and (7). The result is Ra = (L/b) Pr’ Q/NW Equa- 
tions (20) are shown by solid lines in Fig. 10 for the 
water loop. p and n values from Fig. 9 have been used. 
The experimental data are also shown. 

4.4. Stability of the steady-state 
Previous work on single-phase (non-boiling) closed 

loops has revealed a family of oscillatory flows when 
the heating was symmetric [8]. The present experi- 
ments, however, indicate that non-oscillatory steady- 
states exist for both the porous and water loops before 
the onset of boiling. To see if these observations are 
valid in general, we next carry out a stability analysis of 
the steady flows. 

We first introduce a small perturbation of the steady- 
state of the form 

u = u, + EU”e”*’ and F= T, + eT(s)e”**. (21) 

Again, we will consider the system unstable if the 
growth rate w* has a positive real part. We proceed by 
substituting (21) into the governing equations (9) and 
(10) and subtracting the steady-state solution (11) and 
(12). Neglecting terms of O(E’) we have the linearized 
equations 

IO2 1 I I I I,,,, I I I ,111 106 IO’ 0. I 
108 2 x 108 

HEATING RATE , Q 

FIG. 10. Friction factor f, Reynolds number Re, and the Nusselt number Nu as functions of the 
nondimensional heating rate Q for the water loop. The solid lines are the indicated theoretical correlations 

from (20). 
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Integration of the energy equation yields 

c 

0 in the descending leg 

- 1) 

in the heater 

qe - q.;ro,* 
- l)e-qroJ*z 

in the ascending leg 

(23) 

where q = a~~,‘~~“. Coordinates are as shown in Fig. 2 
and the inlet boundary condition T= 0 has been 

employed. 
After evaluating the integral in the momentum 

equation in (22), a characteristic equation for the 
reduced frequency results 

(24) 

where w = qrw*, M = 2dy/$brq3, and N = ~(2 - n). 

We will use the Nyquist criterion [19] to help in the 
search for roots of (24) which possess positive real 

parts. Consider first the closed curve shown in Fig. 
1 l(a). Consider next the complex plane defined by 

H(o) = F(w) - M (25) 

which is shown in Fig. 11(b). The Nyquist criterion 
says, in essence, that the number of roots of (24) within 
a closed curve [as shown in Fig. 1 l(a)] is equal to the 

number of times F(w) encircles the point -M in the 

H(w) plane as w traverses the closed curve. It is 
necessary that F(o)) be analytic within, and analytic 
and nonzero on, the closed curve. 

To apply the criterion, we map the closed curve in 

Fig. 1 l(a) into the H-plane in Fig. 1 l(b). In addition, to 
find all roots with a positive real part, we extend the 
closed curve to include the entire right half of the w- 
plane. The extended curve is mapped as follows : The 
semicircle ABC maps to the origin of the H-plane. The 
semicircle DEF maps to a half circle at infinity in the 
right half of the H-plane. The mapping of the positive 
imaginary axis CD is shown by the solid curves in Fig. 
11(b) for four different values of n. The negative 
imaginary axis FA is mapped by the mirror-image of 
the solid curves about the real axis. The curves in 
Fig. 11(b) correspond to y = 0.46 (the present 

experiments). 
As stated earlier, in order for F(w) to have roots 

within the closed curve shown in Fig. 11(a), the point 

FIG. 11(a). The w-plane with a closed curve indicating the 
integration path to be mapped into the H-plane. (b) Nyquist 
plot of (24) in the complex H-plane defined by (25). The 
locations of a point -M. and a critical value -MC,. are 
shown. The curves correspond to the branch CD in the w- 
plane. The curve parameter is the exponent n in (4). y = 0.46. 

- M in Fig. 1 l(b) should be encircled by the mapped 
curve. Note that M is an independent, real parameter 

which involves geometric factors and the constants ni 
and n from (8). The filled circle in Fig. 11 (b) indicates a 
possible location for the point -M. Clearly, there is a 
critical value ne, [ = 1.58 in Fig. 11(b)] at which the 
mapped curve is tangent to the real axis. For II < II,.,, 
the mapped curve never crosses the real axis, Since a 
point -M can never be encircled, the system is 
unconditionally stable. For n > II,,, the mapped curve 

crosses the real axis and may encircle a point -M as 
shown for n = 1.8. The system is thus unstable for a 
range of values 0 cc M < M,,, where M,, varies with II. 

The value of ncr varies with 7 as shown in Fig. 13. For 

n < ncr the steady state flows are unconditionally 
stable. For n > ncr the flows are unstable if 0 < hf 
< M,, and stable if M > M,,. This is a zone of 
conditional stability. Note that the minimum value of 
nc, is 1.528. 

To compare the foregoing stability analyses with 
our experiments, estimates for n are needed. Note that 
the experimental friction factors depend explicitly on 
Q (Fig. lo), and when graphed vs Re (Figs. 8 and 9) 
best-fit values of n = 1 and 0.572 are obtained. On the 
other hand, the friction factor appearing in the stability 
analysis is treated as an explicit function of Re with Q 
held constant. For the case of Q = 0, the approxi- 
mation n = 1 is expected to hold (dashed lines in Figs. 
8 and 9). Clearly there is uncertainty as to the proper 
value of n [IS], but n = 1 appears to be a realistic upper 
bound. Since this value is below the minimum value of 
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2.0 / , t ,,a,, i L I , , , , , 

CONDITIONALLY 

1.8 - STAELE 

1.6 

n 

1.4 

l-z: 0.5 1.0 5 IO 
Y = c&lb 

FIG. 12. Critical values of the exponent n in (4) for various values ofy. n-values below and above the solid line 
correspond, respectively, to stable and conditionally-stable flows. 

n,, of 1.528 in Fig. 12, we conclude that the steady-state 
flows will always be stable. This result is confirmed by 
our experiments. 

4.5. Onset of boiling 
Boiling was observed in both the porous and the 

water loops during the starting transients and at 
steady-state. Boiling during the starting transient is 
similar in both loops and will be described for the 
porous loop. Boiling in the porous loop occurred when 
the input heat flux Q exceeded 2 x i06. Just above this 
value the heater temperature (see dashed line in Fig. 3 
for reference) reached the saturation temperature 
during the transient. The heater temperature remained 
at saturation until the induced convective flow quen- 
ched the boihng process with an influx of cold water. 
The heater temperature then dropped below satu- 
ration and the remaining transient was similar to the 
non-boiling case (Fig. 3). For Q > 25 x lo6 boiling 
occurred during the transients and at steady-state. 

0 
0 2 4 6 8 IO 

TIME, ! (mini 

FIG. 13. Starting transient in the porous loop with a heat flux 
high enough to lead to dryout; Q = 90 x 106. r, is the 

temperature in the heating section, 

O~sionaily, the saturation tem~rature plateau was 
followed by a short dryout period before quenching 
took place. At very high values of Q, the dryout process 
persisted and was not quenched. An example of such a 
transient is shown in Fig. 13. The linear behavior 
indicates the absence of convective cooling by fiow 
through the loop. The glass loop ultimately fractured. 
Dryout was not observed in the water loop. 

With the appearance of boiling during the steady- 
state operation of the loop, the temperature recordings 
indicated the presence of oscillations. For the water 
loop, which showed boiling at steady-state for 
Q > 110 x 106, small-amplitude oscillations with a 
period of IS-20 s appeared in the outlet temperature. 
The oscillations were nearly periodic as shown in Fig. 
14(a) for Q = 112 x 106, but the period does not 
correspond to any obvious characteristic time in the 
system. Approximately once per hour, a large- 

01”~~‘~~.“.‘~.“~~. 
0 50 100 150 

00° 50 100 150 
TIME, i (set) 

RG. 14. The outlet temperature AT,, in the water loop 
following the onset of steady-state boibng in the beater, Q 
= 112 x 106. A?;,, is the mean outlet temperature. (a) 
Regular oscillations occurring when a large vapor bubble 
forms in the horizontal heated leg. (b) Strong oscillations 
associated with the reieaseofthe vapor bubble approximately 

once per hour. 



608 HAIM H. BALI and K. E. TORR~NTF 

- 
ATcn lA-rEn 

() I./.L-_._L .__L _._-!_____ 

0 5 

TIME,; (hr) 
IO 

Frc;. 15. The outlet temperature ATEA and the heater temperature AT,, in the porous loop after the onset ot 

steady-state boiling in the heater, Q = 53 x 10’. AT,,, is the mean outlet temperature. 

amplitude oscillation occurred as shown in Fig. 14(b). 
The large oscillation is associated with the formation 
and escape of a large vapor bubble from the heater. 
The period of the oscillation corresponds to the flow 
time through the loop. For the porous loop, outlet 
temperature oscillations also occurred as shown by the 
upper curve in Fig. 15. Relatively small oscillations 
result because the porous media restricts bubble 
motions. (Due to the relative steadiness of the outlet 
temperature, the inferred friction factors were included 
in Fig. 8.) The large-amplitude oscillations in the 
heater temperature (lower curve), are attributed to 
either a single vapor bubble or to a dispersed vapor 
zone which restricts flow through the loop. The 
disappearance of the bubble or the zone leads to a drop 
in temperature. Reversals of the flow direction in the 
loop were not observed after the start of boiling; such 
an event is not precluded, however. 

5. CONCI.USIONS 

Results from our study of the symmetrically-heats 
free convection loop sketched in Fig. 1 may be 
summarized : 

1. The rest state is found to be unconditionally 
unstable when heated. A flow always develops. 

2. A time delay in the production of warm discharge 
fluid always occurs. This is principally due to the time 
required for secondary Rows to diffuse warm fluid to 
the vertical legs, to the time required for the onset and 
growth of a flow-initiating disturbance, and to the 
finite transit times in the loop. 

3. Non-oscillating steady states are observed in the 
absence of boiling. Theory suggests that a pathological 
friction law could lead to instability. 

4. Secondary flows increase the steady-state friction 
factors above estimates based on conventional cor- 
retations. Secondary flows are especially significant for 
the water loop, but are of small importance in the 
porous loop. 

5. The onset of boiling leads to oscillating flows. 
Occasional strong oscillations appear and are attri- 
buted to the periodic formation and escape of large 
vapor bubbles in the horizontal heating section. 
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7 

x, 

9. 

10. 

11. 

12. 
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COMPORTEMENT EN REGIME PERMANENT OU VARIABLE DUNE BOUCLE 
OUVERTE, CHAUFFEE SYMETRIQUEMENT EN CONVECTION NATURELLE 

RCumQ-On rapport des experiences et des analyses sur une boucle ouverte a convection naturelle. La 
boucle est en forme de U avec le segment inferieur chautfe; les parties verticales sont adiabatiques et sont 
connect& a un reservoir isotherme. La boucle est remplie d’eau ou dun milieu poreux satine d’eau. Des 
rtsultats concernent le regime d’initiation, les coefficients de frottement et les flux thermiques transfer& en 
regime permanent pour des nombres de Reynolds entre 4 et 1000. On observe des oscillations avec apparition 
d’ibullition. Des analyses de stabilite en simple phase confirment les etats instables observes expirimentale- 
ment et elles revtlent une instabilite conditionnelle des etats permanents. Des simulations numeriques des 
regimes variables au depart sont obtenues et elles sont comparies avec l’experience. Les rbultats sont 

applicables a la geothermie, aux thermosyphons a boucle ouverte solaires et industriels. 

INSTATIONARES UND STATIONARES VERHALTEN EINES OFFENEN, 
SYMMETRISCH BEHEIZTEN KREISLAUFS BE1 FREIER KONVEKTION 

Zusammenfassung-Es wird iiber Experimente und Untersuchungen an einem offenen Kreislauf bei freier 
Konvektion berichtet. Der Kreislauf hat U-Form, wobei das untere Segment beheizt wird und die mit einem 
isothermen Reservoir verbundenen Schenkel adiabat sind. Der Kreislauf ist mit Wasser oder einem mit 
Wasser geslttigten porosen Medium gefiillt. 

Die experimentellen Ergebnisse umfassen die Anlaufzustande, die Widerstandsbeiwerte und den 
Warmetibergang im stationlren Zustand fur Reynolds-Zahlen der Stromung von 4 bis 1000. Beim Einsetzen 
des Siedens werden Oszillationen beobachtet. Stabilitatsuntersuchungen im Bereich der Einphasenstriimung 
bestatigen die instabilen Ruhelagen und die stabilen stationlren Zustiinde, die bei den Experimenten 
beobachtet wurden, und zeigen eine bedingte Instabilitat der stationaren Zustlnde. Es wurden numerische 
Simulationen der Anlaufzustande durchgefiihrt und mit den Experimenten verglichen. Die Ergebnisse sind 

anwendbar auf geothermische, solare und industrielle Thermosyphons des offenen Typs. 

HECTAHMOHAPHMH M CTAHMOHAPHbIH PEXHMbI OTKPbITOFO CHMMETPMYHO 
HArPEBAEMOI-0 CBOE;OAHO-KOHBEKTMBHOFO KOHTYPA 

Aaaoraum- OrHiCaHbI 3KCnepHMeHTbI II npeL,CTaB,IeH aHaJlH3 OTKpbITOrO CB060flHO-KOHBeKTHBHOrO 

U-o6pa3Horo KOHTypa,H&iXHa5I 4aCTb KOTOpOrO HarPeBaeTCH,a BepTRKaJbHbIe YWCTKB ZWia6aTWIHbI 

&i nORCOCLUiHeHb1 K &f3OTepMH'IeCKOMy &Y23epBj'apy. KOHTYP 3NIOJlHeH BOnOii Ei nOPNCTbIM BCUICCTBOM. 

npI,BenCHbI pe3)'JIbTaTbI 3KCnepHMeHTWIbHOI'O OnpefieneHHfl napaMeTpOB Ha'(a,,bHO~O HeyCTaHOBHB- 

UIerOC5InpOU‘ZCCa)I KOS$+iUHeHTOB TPeHHR,aTaKxe HHTeHCHBHOCTeti TenJIOnepeHOCa BCTaIlHOHapHOM 

peariMe B naanasose wcen Pe~HOnbnCa OT 4 110 1000. Kone6aHse Ha6ntonatoTca npe BO~HBKHO- 

BeHWH KBIICHHII. C nOMOIUbKJ aHaJIH3a yCTO&%iBOCTEi DJIR OL,HO@i3HOti CPenbI nOJ,TBe&EKDeHbI 3KCne- 

~~MeHT~~bHOH~6~~~~~MbI~H~~CTO~~~~bI~COCTO~H~~ nOKOIl HyCTOi%~~BbIeCTaI,HOHa~HbIeCOCTOsIH&,~ 

li BbIRBJleHa )'CJIOBHaR Hej'CTOi+IHBOCTb CTaUHOHapHbIX COCTOSIHdi. npOBeneH0 WiCJleHHOe MOneJWipO- 

BaHBe nepBOHaWnbHo HeyCTOii'lliBbIX COCTOSIHB~ B L,aHO CpaBHeHW C 3KCnepHMeHTOM. k3y,lbTaTbI 

MO)KHO WCnOJIbJOBaTb nplc aHanA3e I-eOTepManbHbIX. CO,IHWHbIX A npOMbIUIneHHbIX TePMOCM$OHOB 

OTKPbITOrO TB"B. 


